Impact of Compound-Specific Transverse Mixing on Steady-State Reactive Plumes

David L. Hochstetler¹, Massimo Rolle², Gabriele Chiogna³, Christina M. Haberer², Peter Grathwohl², and Peter K. Kitanidis¹

¹Stanford University, Department of Civil and Environmental Engineering, Stanford, CA
²University of Tübingen, Center for Applied Geoscience, Tübingen, Germany
³Università di Trento, Dipartimento di Ingegneria Civile ed Ambientale, Trento, Italy

1. Overview
We study the effect that transverse dispersion has on mixing-limited reactive transport in porous media, focusing on steady-state reactive plumes.

Mixing is critical and \(D_t \) is used to characterize it.

Our research objectives are to:
1) Evaluate the appropriateness of a nonlinear compound-specific description of \(D_t \) and its direct application to reactive transport
2) Assess the performance of such a parameterization of \(D_t \) in predicting mixing-limited reactive transport across a range of relevant groundwater flow velocities
3) Compare the predictive capability of the proposed nonlinear parameterization of \(D_t \) to that of the classical linear model

2. Problem Setup and Approach
Flow:
\[-\rho \frac{Dp}{Dt} + \rho \frac{Du}{Dt} = 0\]
Transport:
\[\nabla \cdot (\nabla D_t \nabla c) = R\]

\(D_t \) is used to characterize it.

Transverse dispersion (a) and dispersivities (b) as a function of velocity. Lines indicate nonlinear parameterization of \(D_t \).

3. Conservative Results
- Conservative tracers:
 - 2 compounds: fluorescein (\(D_{t,\text{fl}} = 4.8 \times 10^{-10} \text{ m}^2/\text{s} \)), oxygen (\(D_{t,\text{o}} = 1.97 \times 10^{-9} \text{ m}^2/\text{s} \)).
 - 8 flow velocities in the range: 0.1-10 m/d
- Determine \(D_t \) for each simulation
- Use for 2 parameterization approaches
 - Nonlinear, compound-specific: \(D_t = D_{t,\text{fl}} + D_{t,\text{o}} \) (parameterized)
 - \(\delta = 5:7 \): ratio length-hydraulic radius of pore channel
 - \(\beta = 0.47 \): captures extent of incomplete mixing
 - Linear: \(D_t = D_{t,\text{fl}} + a_t u \)
- Compute\(\alpha_t \) for each simulation

4. Reactive Results
- \(A + B \rightarrow C \)
 - \(R_t = \pm k_t c_A c_B \), \(k = 2 \times 10^5 \text{ M}^{-1} \text{ s}^{-1} \) (effectively instantaneous)
 - \(D_{t,\text{fl}} \) and \(D_{t,\text{o}} \) are set equal to that of fluorescein and oxygen, respectively.
 - \(D_{t,\text{fl}} \) and \(D_{t,\text{o}} \) with 4 different \(\alpha_t \) from 4 different tracer tests (red points above)

5. Conclusions
- Nonlinear parameterization captures the effect of incomplete mixing in the pore channels
- Critical in determining amount of reactions
- Linear parameterization cannot account for this
- Transverse dispersivity is not constant for a given porous medium but depends on both flow conditions and diffusive properties of the species
- Nonlinear \(D_t \) improves accuracy of continuum reactive transport predictions
- Steady-state reactive plume length increases with the square root of the flow velocity
- Molecular diffusion important
 - Micro process \(\rightarrow \) macro impact

Acknowledgements
Funding from the National Science Foundation under project EAR-0736772, “Non-equilibrium Transport and Transport-Controlled Reactions”. Student funding for D.L.H. from Government support and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. Support for M.R. from the Marie Curie International Outgoing Fellowship (DIREACT project) within the 7th European Community Framework Programme.

References