Aspects of a Discontinuous Galerkin Approach for 3D Dynamic Rupture Modeling in the Case of a Complex Fault System

Christian Pelties

Josep de la Puente (BSC), Jean Paul Ampuero (CalTech), Gilbert Brietzke (GFZ), Martin Käser (Munich Re)

pelties@geophysik.uni-muenchen.de

Dept. of Earth and Environmental Sciences – Geophysics
LMU Munich

Motivation

Possible applications:

- Understanding earthquake source physics: initiation, propagation, and restarting effects
- Ground motion prediction
- Hazard assessments
- Seismic risk

Why with the Discontinuous Galerkin approach?

- High-accurate results of the rupture process – no spurious oscillations in the spectra
- Enables use of unstructured meshes – curved or kinked faults, branching, surface rupture, fault interaction
- High-accurate simulation of the wave propagation including heterogeneous media and topography
- Excellent scalability - large scale simulations
Discontinuous Galerkin Approach

Numerical approximation of the solution:

\[
\left(Q_h^{(m)} \right)_p (\xi, \eta, t) = \hat{Q}_p^{(m)}(t) \Phi_l(\xi, \eta)
\]

- \(\Phi_l \) are orthogonal basis functions
- diagonal mass matrix

Integrating the governing equations in space and time in the Discontinuous Galerkin (DG) framework gives

\[
\int_t^{t+\Delta t} \int_{\mathcal{T}(m)} \Phi_k \frac{\partial Q_p}{\partial t} \, dV \, dt + \sum_{j=1}^{3} F_p^{j} - \int_t^{t+\Delta t} \int_{\mathcal{T}(m)} \left(\frac{\partial \Phi_k}{\partial x} A_{pq} + \frac{\partial \Phi_k}{\partial y} B_{pq} \right) Q_q \, dV \, dt = 0
\]

where the numerical flux is given by

\[
F_p^{jk} = A_{pr} \int_t^{t+\Delta t} \int_{S_p} \Phi_k \tilde{Q}_r \, dS \, dt
\]
Dynamic Rupture within the Discontinuous Galerkin Approach

Treat dynamic rupture as a **boundary condition** using the flux term:

- flux provides information at element interface
- solve friction law
- in case of slip, impose traction and fault parallel velocities
- solve inverse Riemann problem

\[Q_j^- \quad Q_j^+ \]
\[x_n=0 \]

(de la Puente et al., 2009)
Verification – TPV3 SCEC Test Case

(Harris et al., 2004)

- spontaneous rupture propagation on a straight fault
- homogeneous fullspace
- linear slip weakening friction

Comparison between
ADER-DG method order 4 and 200m triangles at the fault (larger tetrahedrons in bulk)
and
DFM - Finite Difference staggered-grid split node order 2 with 50m grid interval
and
MDSBI - Multidimensional spectral boundary integral with 50m grid interval
Verification – TPV3 SCEC Test Case

Verification – TPV3 SCEC Test Case

DFM data provided by Luis Dalguer. MDSBI data computed with the code of E. Dunham (version 3.9.10).
Verification – TPV3 SCEC Test Case

DFM data provided by Luis Dalguer. MDSBI data computed with the code of E. Dunham (version 3.9.10).
ADER-DG does not show spurious oscillations at the high frequency content of the seismograms!
Convergence Test for TPV3

Rupture arrival time is measured at 400 randomly distributed positions

<table>
<thead>
<tr>
<th>Method</th>
<th>Rupture time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADER-DG O2</td>
<td>3.28</td>
</tr>
<tr>
<td>ADER-DG O3</td>
<td>2.84</td>
</tr>
<tr>
<td>ADER-DG O4</td>
<td>2.83</td>
</tr>
<tr>
<td>ADER-DG O5</td>
<td>2.83</td>
</tr>
<tr>
<td>DFM^a</td>
<td>2.96</td>
</tr>
<tr>
<td>BI^a</td>
<td>2.74</td>
</tr>
</tbody>
</table>

^aDay, et al. (2005)
Application to the Landers Earthquake Fault System

California’s
San Andreas Fault

Landers 1992
M=7.3

San Andreas Fault

Map copyright © 2006 David K. Lynch

www.data.scce.org/faults
Application to the Landers Earthquake Fault System

www.data.scec.org/faults
Application to the Landers Earthquake Fault System

Strong mesh coarsening applied
Strong mesh coarsening applied

Application to the Landers Earthquake Fault System
Application to the Landers Earthquake Fault System
Summary

- New approach of implementing dynamic rupture via fluxes (J. de la Puente '09)
- Verification with the SCEC test (TPV3, TPV5)
- Bimaterial applications under Prakash-Clifton regularization (not presented)
- Application to complex fault structures with branches (1992 Landers)
- Method should allow surface rupture, fault branching, curved and kinked faults
- No spurious high-frequency contributions in the slip rate spectra

Open Problems and Outlook:

- Observation of a non-zero normal stress when using highly unsymmetric mesh
- Testing of smooth heterogeneous initial stress distributions (and their implementation)
- More advanced friction laws: rate-and-state