Observations of reactive nitrogen oxide fluxes by eddy covariance above two mid-latitude mixed hardwood forests

Jeffrey A. Geddes & Jennifer G. Murphy
Department of Chemistry
University of Toronto

Contact: jeff.geddes@utoronto.ca

Wednesday, December 5, 2012
2012 AGU Fall Meeting
Abstract B34E-04
“The Bioatmospheric N Cycle: N Emissions, Transformations, Deposition and Terrestrial and Aquatic Ecosystem Impacts I”
Human modification of the N cycle has caused global environmental impacts

Current N deposition rates and their impact on health of certain forests is unclear

Quality of inferential deposition models?

Poorly parameterized atmospheric nitrogen cycling in biosphere-atmosphere exchange models

- Wet / dry deposition?
- Controls on deposition rates
- Reactive nitrogen oxide chemistry?
View from PROPHET
July 24 – August 14, 2012

View from HFRT
July 20 – October 6, 2011
Two-channel chemiluminescence
NO\textsubscript{x} & NO\textsubscript{y} Analyzer

"NO\textsubscript{x}" = NO + NO\textsubscript{2}
"NO\textsubscript{y}" = NO\textsubscript{x} + HNO\textsubscript{3}, PAN, p-NO\textsubscript{3}, etc.
PROPHET-2012

HFRT-2011

Similar trends
Diurnal Plots of NO$_y$ Fluxes

PROPHET-2012

- Deposition limited by atmospheric mixing
- Deposition influenced by entrainment of polluted air from residual layer during break up of NBL

HFRT-2011
Dry Deposition Models

Estimates of N deposition in this region could be very sensitive to model uncertainties.

NO$_y$ dry deposition

Deposition simulated by GEOS-Chem (Zhang et al. 2012, ACP)
Transport and Deposition

Wet deposition: Highly episodic

Dry deposition: Continuous, but can be dominated by high concentration episodes
Transport and Deposition

NO\textsubscript{y} Deposition

- **NO\textsubscript{y} Deposition as a function of wind direction**
- **Flux from North-West**: Normally distributed around 0
- **Flux from South**: Skewed towards high deposition fluxes
Regional Context

NO_y estimated to contribute 9-13% of total N deposition

NO_2 and HNO_3 contribute 60-80% of NO_y deposition

Zhang et al., 2008 (Atm. Env.)
Zhang et al., 2009 (JGR-Atm.)

2 – 27 June, 2004
$\text{NO}_x = 0.51$ ppb
$\text{NO}_y = 1.24$ ppb

12 Aug – 18 Sep, 2004
$\text{NO}_x = 0.83$ ppb
$\text{NO}_y = 1.64$ ppb

20 July – 6 Oct, 2012 (Present study)
$\text{NO}_x = 0.54$ ppb
$\text{NO}_y = 1.15$ ppb
Sum of diurnal average flux
\(~ 10.6 \text{ umol/m}^2 \text{ NO day}^{-1}\)

\(~ 0.18 \text{ kg N ha}^{-1} \text{ from July - October}\)

Wet N deposition estimates 1.3 kg N ha}^{-1} \text{ (De Sousa, 2010)}

\(\text{NOy} \sim 10-15\% \text{ of total N deposition}\)

(\text{Environment Canada Estimates were 9-13\%})
Successful application of eddy covariance to directly measure NO$_y$ fluxes above two comparable North American mixed hardwood forests

NO$_y$ fluxes observed at the two sites are similar, but have different processes driving diurnal variability

Direct observations of polluted airflow influencing the magnitude of dry deposition

Can confirm that dry deposition of NO$_y$ represents 10-15% of overall N deposition at Haliburton Forest
Acknowledgements

Haliburton Forest & Wildlife Reserve

Faculty of Forestry, University of Toronto

University of Michigan Biological Station and PROPHET

National Science and Engineering Research Council

University of Toronto Centre for Global Change Science

Contact: jeff.geddes@utoronto.ca